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Entry of hydrogen into metals is of serious concern to metallurgists and engineers, since it
severely degrades the mechanical properties of metals (1). These problems arise in the cathodic
protection of metals, power plants, and in environments where H2S is present as in petroleum refining
(2) where the hydrogen evolution reaction (h.er.) and hydrogen permeation reaction take place in the
corroding or cathodically polarized metal. By performing hydrogen charging experiments of thin
samples using the Devanathan-Stachurski cell, the permeation characteristics have been extensively
studied (3,4). The present paper seeks to analyze the h.e.r. mechanism and to predict the relationship
between the permeation flux and the charging and evolution (recombination) fluxes. A thorough
development of the model and actual computations of rate constants and hydrogen coverages will
appear elsewhere (5).

Anaz

Essentially, three steps are involved during cathodic hydrogen charging of metals. They are: (1)
the hydrogen discharge reaction (proton tunneling), (2) hydrogen recombination reaction either by
chemical recombination or electrochemical desorption, and (3) hydrogen permeation (mainly by bulk
diffusion). Of these three, the bulk diffusion step is usually the slowest. A detailed schematic of the
reactions is given in Fig. 1 below.

The charging current (ic) is given by
ic = io' (I - 8s) e'a"q (I

The hydrogen evolution current (it) (assuming chemical recombination of H atoms) is given by
ir = F k3 s2  (2)
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0036-9748/88 $3.00 + .00

Copyright (c) 1988 Pergamon Press plc



912 HYDROGEN ENTRY INTO METALS Vol. 22, No. 6

H2

I ~ :FIG.!1. Schematic
Sshowing hydrogen

discharp,
C 7' c.()I recombination,"( k (2b) k_2 (4) k4 -.H + per ton and

H30+ . (2)k 2  , ...... H--'+ -I-+ - selvedge reactions.
2

[Aa c noe C I

Surfaoe "bswface exit side
(xO) N- )  N-0

[H]

0 .
,.--, x

The steady state hydrogen permeation cuent (i..) is given by

i. a F- 21. C,(3)

In equatois 1, 2 and 3: io' Fk = io/(l-ee); io the exchange curnt density; e the eCquiibrium

swfacecoverage of hydrogen ; kl= the discharge rate coefficient- k, CH+C -aEeq (acid)

l aotEe (akaine); ki a the rate constant for the forward reaction; cH+ = H + ion concentraton; a =

F/RT - 38.94 (volts) 1 at T - 300K; a - the transfer coefficient; E q = the equilibrium potential for the

h.er, Os - the surface coverage of hydrogen; 'n = the hydrogen overvoltag¢ - E applied -Eeq; k3 - the
recombination rate coefficient; Di = the hydrogen diffusion coefficient in the metal L = the membrane
thickness.

The model considers a selvedge reaction (as a result of proton tunneling) that is quite fast and
constitutes a transition layer of a thickness that could range upward from - 1 nm (that has yet to be
determined by special experiments). This establishes a metal subsurface hydrogen concentration, ci, at
the boundary of the selvedge. Thus, hydrogen diffuses out to either surface, though mostly to the
charging side to recombine to form H2 molecules. An equilibrium will be established between the
surface covered (adsorbed) hydrogen atoms and hydrogen just below the surface (in the adsorbed state,

with concentration cs). This equilibrium has been analyzed before (6,7) giving Os = cs/k', where k' =
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the equilibrium absorption - adsorption constant and cs = ci - Cg. (However, it is to be emphasized here
tha the selvedge reaction is not critical to the development and applicatoi of this model Consideration
of selvedge, on the other hand, helps to generalize the model; in the absence of a selvedge, cg -0 and
s - ci). Using these relations along with equations (1), (2) and (3) one can awive at the following set

of equatio, which for the first time have taken into account the effect of i.e on the h.e. kinetics:

i. k' + (4)
and

ieM (bio' (" +io 5

" ) Lb i(5)

where b - LI(FDI) - a constant for a metal; also,

MV 'dni 1 d11 di11  v'i- ~ i1 < i <- <2 _24

c d log 1 logi- 1 dlogi decade (6)

for the model.

The transfer coefficient is given by
a-- " -/a (6a)dI j

Details of the derivations are shown elsewhere (5).

The potential range (1 to Nl) in which the recombination reaction will be coupled with the

discharge reaction (commonly observed on many metals) is given by (5)

lIl ( 31klk] / (aa) (7a) OT

,, [In (k,/(10k3))] / (ad) (7b)

where the superscripts I and u refer to the lower and upper limits of the overpotential range.

Results and Discussion

In hydrogen permeation experiments, ic is set and when the permeation current becomes
independent of time, i., is measured. Then ir = ic - i,.

If the plots of ie vs ir (equation (4)) and ic e aOczi vs [i. - (equation (5)) are linear,t!I eqaioth)er "er then an o
of the coefficients k', k3, cx and io' can be calculated. Such calculations have been done on
experimental data from theliterature for iron and nickel membranes and found to verify the model (5)
since these two plots are linear. An example of such an analysis is given for the polarization and
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peadon data of Bockis al (3) obtained on Armco iron in .N H2SO4 solution. Fig. 2 shows

the plot Of i vs ir and ig. 3 shows ic 0 KM vs Di..e]-. plot for thedaza ofBockris et al (3). Itis

easily seen that these plots ae linear and hence the model can be applied to detennine the rate constants
and exchange current density (Table 1). Then, foai Eqn. (2), Os can be calculated using the k' and io'
values obtained from the slope and intercept, respectively, of Fig. 3, the k3 value obtained from the

slope of Fig. 2 and the ir value from ic - i... The surface coverage (0s) vs the hydrogen overvoltage

(TI) plot (for the Bockris et al data) is shown in Fig. 4. It can be seen that the coverage is quite low in
the potential range of perimentation.
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FIG. 2. Analysis of Data of Bockris et al (3). FIG. 3. Analysis of Data of Bockris et al (3).

TABLE I
Calculated Values by Applying the

Model to the Data of Bockris et al (3)

* io - 0.5 ILA/sq.cm.
>okl - 5.5 x 10- 12 mol / cm2 .s

k3 - 2.3 x 10- 5 o /(cm2.s
le 2.6 x 10-5 mol /cm 3

=600mV; Tu -8 10mV

4 40 " '_ __'_ _ _ __,_ _

0.006 0.010 0.015 0.020 0.025

eos

FI0. 4. H Coverage for the Data of Bockris et -.1(3).

V
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Thus, this model effectively accounts for the contribution of i.e to the overall kinetics. The most
important prediction of this model is that i. is proportional to 4ir and not to '4ic as assumed in earlier
models (3). This type of relationship (i.e a o4ir) has been previously observed (8).

The above relafionships assume that il >> RT/F so that the backward reactions can be neglected.
Also, the Langmuir isotherm of hydrogen coverage was utilized in order to simplify the derivation.
Howeve, in many cases, the reactions (dischare and recombination) are activated in which case
Frumkin-Temkin corrections (9) have to be applied for 8s in the equations for ic and ir. Equation (1)
then becomez

ic - i, (I -e,) Ce'Se''  (8)
and equation (2) becomes

i k 3iO.ceCe: '' (9)

where f - sRT, y being the gradient of the apparent standard free energy of adsorption with coverage.
The value of f = 4 to 5 for H coverages (9). In the problem of enhanced hydrogen entry in the
presence of H2S, such considerations have been shown to be necessary (10). The modified
relationships between i., ir and ic are given by

and In (f(i. i.)) -c a (-11) + In (i,') (11)
where

S(af bi.)

f(ic, .) -
(1- .- )

k'

Thus, equation (10) tells us that i. will not be linearly related to '/ir when fo, meaning the discharge
and recombination reactions are activated, probably due to a side reaction of H2S with a hydrated
electron, e'aq (10), as follows:

H2S + Cq -+ H2 S (12)
and

H2 S-+H++M -+ M-H+H 2S (13)

'dirIf In (.) vs i.e and In (f(iciae)) vs Ti are linear, then this side reaction and overall mechanism can be
i0e

said to be operating. Then, the coefficients k', k3, a and io' can be computed from the slopes and
intercepts of these plots, in conjunction with the iterative solution of equations (10) and (11).
Eventually, 0s vs T1 can be plotted; and 8e, io and kI can be computed.

Once again, the potential ranges, where the recombination and discharge reactions are coupled,
can be estimated from equations (7a) and (7b). With increasing H2S concentration, these potential
ranges have been found from analysis of available data according to the above model to become less
negative, k3 progressively decreases suggesting a decreasing surface diffusivity of Had atoms, and ki
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piogressively increases suggesting that the discharge reaction is enhanced by the side reaction, equation
(12), followed by equation (13). This will also explain why the overvoltage actually decreas rather
than increases in the presence of H2S.

(

A summary of a recently completed analysis of hydrogen electrode reactions during aqueous
cathodic charging of metals is presenited. The analysis for the first time takes into account the effect of
hydrogeng-em nd. into the metal an the h.e.r. Prom the model all of the kinetic parameters are
comptae without use of any adjustable parameter. For the first time, surface coverages and rate
constants am determinable from the measured charming and permeation currents. The enhancement of
hydrogen entry in the presence of poisons, such asi±S- can be analyzed with the model, taking into
account the Fnmldn-Temkin isotherms in the discharge and recombination reaction kinetics. fr-' 1 , d. '

Financial support by the Office of Naval Research under Contract No. N0OO14-84k-0201 is
gratefully acknowledged.
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